

A Noble-Metal-Free, Tetra-nickel Polyoxotungstate Catalyst for Efficient Photocatalytic Hydrogen Evolution

Hongjin Lv,[†] Weiwei Guo,[†] Kaifeng Wu,[†] Zheyuan Chen,[†] John Bacsa,[‡] Djamaladdin G. Musaev,[§] Yurii V. Geletii,[†] Sarah M. Lauinger,[†] Tianquan Lian,[†] and Craig L. Hill^{*,†}

[†]Department of Chemistry, [‡]X-ray Crystallography Center and [§]Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States

Supporting Information

ABSTRACT: A tetra-nickel-containing polyoxotungstate, $Na_{6}K_{4}[Ni_{4}(H_{2}O)_{2}(PW_{9}O_{34})_{2}]\cdot 32H_{2}O(Na_{6}K_{4}-Ni_{4}P_{2})$, has been synthesized in high yield and systematically characterized. The X-ray crystal structure confirms that a tetra-nickel cluster core $[Ni_4O_{14}]$ is sandwiched by two trivacant, heptadentate $[PW_9O_{34}]^{9-}$ POM ligands. When coupled with (4,4'-di-tert-butyl-2,2'-dipyridyl)-bis(2phenylpyridine(1H))-iridium(III) hexafluorophosphate $[Ir(ppy)_2(dtbbpy)][PF_6]$ as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor, the noblemetal-free complex Ni₄P₂ works as an efficient and robust molecular catalyst for H₂ production upon visible light irradiation. Under minimally optimized conditions, Ni₄P₂ catalyzes H₂ production over 1 week and achieves a turnover number (TON) of as high as 6500 with almost no loss in activity. Mechanistic studies (emission quenching, time-resolved fluorescence decay, and transient absorption spectroscopy) confirm that, under visible light irradiation, the excited state [Ir(ppy)2(dtbbpy)]^{+*} can be both oxidatively and reductively quenched by Ni₄P₂ and TEOA, respectively. Extensive stability studies (e.g., UVvis absorption, FT-IR, mercury-poison test, dynamic light scattering (DLS) and transmission electron microscopy (TEM)) provide very strong evidence that Ni_4P_2 catalyst remains homogeneous and intact under turnover conditions.

T he photocatalytic splitting of water into dihydrogen and dioxygen utilizing solar energy has become a very active research area recently.¹ Current research endeavors focus on developing efficient, robust, inexpensive, sustainable, and environmentally benign catalytic systems for each half reaction, i.e. water oxidation or water reduction. Since early reports on molecular photocatalytic water-reducing systems in the late 1970s,² many organometallic complexes of several earth-abundant metals including iron,³ cobalt,⁴ nickel,⁵ and molybdenum⁶ have been used as molecular catalysts for photochemically and electrochemically driven hydrogen production. Although some of these systems are sufficiently robust to achieve high turnover numbers (TON > 10³),⁴c,e,f,5a,c-e</sup> many others have the problems of either low efficiency, limited solubility in aqueous media, instability toward strong acidic environments, or they deactivate by ligand dissociation, decomposition and/or hydrogenation.⁷ Therefore,

the development of new transition-metal-based catalysts that are highly efficient, very stable, structurally and geometrically tunable remains a substantial challenge.

Polyoxometalates (POMs), a large family of transition-metal oxygen-anion clusters with d^0 electronic configurations, are attractive candidates for catalysis of multielectron processes because of their extensive tunability, rich redox chemistry and high stability toward hydrolysis in water or hydrogenation under reducing conditions.⁸ Recently, transition-metal-substituted POMs have been extensively investigated as water oxidation catalysts (WOCs) under thermal,⁹ photochemical¹⁰ and electrochemical¹¹ conditions; however, this is not the case for POM-based water reduction catalysts (WRCs). There are early studies that show reduced POMs evolve H₂ via photochemical¹² or electrochemical¹³ processes, but all these studies involve either strong UV-light irradiation or the use of Pt(0) as a cocatalyst.

To date, there are only few reports on visible-light-driven H_2 evolution by POM WRCs,¹⁴ and only two of them are Pt(0) free.14c,d The first example by Artero, Izzet, and co-workers involves a covalently linked Ir(III)-photosensitized polyoxometalate complex, which catalyzes H₂ production with a TON of 41 after 7 days of visible light irradiation.^{14c} The second example, recently reported by our group, is a tetramanganesecontaining POM, $[Mn_4(H_2O)_2(VW_9O_{34})_2]^{10-}$ (Mn₄V₂) that catalyzes hydrogen evolution from water with a TON of 42 after 5.5 h of visible light irradiation. Although the efficiency of the Mn_4V_2 system is higher than that of the Ir^{III}-photosensitized POM catalyst,^{14c} there is still much room for improvement. In an effort to develop more viable (fast, selective and stable), more efficient, and noble-metal-free molecular WRCs, we report here a tetra-nickel-substituted polyoxometalate, $[Ni_4(H_2O)_2(PW_9O_{34})_2]^{10-}$ $(Na_6K_4-Ni_4P_2)$, that works as an efficient and robust molecular catalyst for H₂ production in a three-component system upon visible light irradiation.

 Ni_4P_2 (Figure 1) was prepared from salts of earth-abundant elements (nickel acetate, sodium tungstate, and Na_2HPO_4) following a modification of the procedure by Coronado, Galán-Mascaros and co-workers¹⁵ and systematically characterized by thermogravimetric analysis, FT-IR, elemental analysis, ESI mass spectrometry, cyclic voltammetry, DFT calculations, and singlecrystal X-ray diffraction (see Supporting Information (SI)).

Received: August 16, 2014 Published: September 22, 2014

Figure 1. Polyhedral and ball-and-stick representation of Ni_4P_2 . Green, Ni; red, oxygen; pink, H; light blue, WO₆; orange, PO₄.

The visible-light-driven catalytic activity of Ni_4P_2 for hydrogen evolution was examined using a three-component system: [Ir(ppy)₂(dtbbpy)]⁺ as photosensitizer, triethanolamine (TEOA) as sacrificial electron donor, and Ni_4P_2 as a WRC. We chose the iridium photosensitizer, $[Ir(ppy)_2]$ $(dtbbpy)]^+$, rather than $[Ru(bpy)_3]^{2+}$ used in our recent work,^{14d} because its excited state provides more driving force $([Ir(ppy)_2(dtbbpy)]^{2+/+*} \sim -0.96 \text{ V vs SCE; [Ir (ppy)_2(dtbbpy)]^{+/0} \sim -1.51$ V vs SCE in CH₃CN) for successive reduction of the Ni_4P_2 catalyst.¹⁶ Photolysis of a solution of 0.2 mM [Ir(ppy)₂(dtbbpy)]⁺, 0.25 M TEOA and catalyst Ni₄P₂ in deaerated CH₃CN/DMF (1/3) using a bluelight-emitting diode (LED) (λ = 455 nm, 20 mW) at 25 °C results in the reduction of Ni_4P_2 (change in solution color from yellow to green; Figure S9) in agreement with DFT calculations (see SI) and the production of hydrogen. No such color change is observed in the absence of Ni₄P₂. H₂ production increases linearly with time after exposure to the 455 nm visible light (Figure 2, Figure S10), and no H_2 forms in the dark. A TON of ~290 (~11.6 μ mol H₂ gas per 0.04 μ mol catalyst Ni₄P₂) is obtained after 2.5 h of irradiation. This is more than 20 times higher than the Mn₄V₂ WRC.^{14d} Control experiments revealed that all 3 components, i.e., the catalyst Ni₄P₂, TEOA and $[Ir(ppy)_2(dtbbpy)]^+$ are essential for efficient H₂ evolution; the absence of any one of these species results in little or no H₂ (Figure S10). An additional control experiment using $\text{TBA}_6[\text{P}_2\text{W}_{18}\text{O}_{62}]~(\text{TBA-P}_2\text{W}_{18})$ in place of Ni_4P_2 gives very little H₂ (TON = 1; Figure S10). A Ni²⁺ salt (e.g., NiCl₂), a potential dissociation product of Ni₄P₂, under otherwise identical conditions gives much less H₂ (Figure S10).

Figure 2 illustrates the reusability of the Ni_4P_2 and $NiCl_2$ catalysts. The Ni₄P₂-catalyzed system shows much higher H₂ evolution rates and final yields. A slight decrease of H₂ yield is observed in three successive runs. However, the addition of fresh $[Ir(ppy)_2(dtbbpy)]^+$ stock solution (0.1 mL of 0.8 mM) fully restores the H₂ evolution activity. The kinetics of H₂ production in the NiCl2-catalyzed system shows quickly diminishing yields of H₂ with time. After 12 h of irradiation, the total TON is 1100 and 110 for Ni₄P₂ and NiCl₂, respectively. Centrifugation of the NiCl2-containing solution almost completely removes its photocatalytic activity, indicating the heterogeneity of the system (Figure 2a, red line, pink arrow). This phenomenon is not seen in the Ni₄P₂-catalyzed system. A scale-up experiment was used to evaluate the longterm robustness of the Ni₄P₂-catalyzed system. Figure 2b shows that Ni₄P₂ catalyzes H₂ production over 1 week, reaching a TON of 6500 (corresponding to 260 μ mol H₂ per 0.04 μ mol Ni_4P_2), with little or no loss of catalytic activity, which is, to our knowledge, the highest value for a noble-metal-free POMcatalyzed H₂ evolution system.

Figure 2. (a) Photocatalytic H₂ evolution using 20 μ M Ni₄P₂ (black curve) and 20 μ M NiCl₂ (red curve). Conditions: LED light (20 mW, 455 nm), [Ir(ppy)₂(dtbbpy)]⁺ (0.2 mM), TEOA (0.25 M), 2 mL CH₃CN/DMF (1/3) deaerated with Ar. (b) Long-term photocatalytic H₂ evolution using Ni₄P₂ (10 μ M), Conditions: LED light (20 mW, 455 nm), [Ir(ppy)₂(dtbbpy)]⁺ (0.2 mM), TEOA (0.25 M), H₂O (1.4 M), 4 mL CH₃CN/DMF (1/3) deaerated with Ar. Note: the blue arrow means the reaction solution was degassed; the red arrow indicates 0.1 mL of dye (0.8 mM) was added; the pink arrow represents the reaction was centrifuged.

The rate of H₂ evolution depends on the concentrations of catalyst Ni₄P₂, [Ir(ppy)₂(dtbbpy)]⁺ photosensitizer and TEOA sacrificial donor. At constant concentration of [Ir-(ppy)₂(dtbbpy)]⁺ and TEOA, increasing [Ni₄P₂] from 4 to 30 μ M results in an increase in the H₂ yield from 1.33 to 15.5 μ mol after 2.5 h of irradiation (Figure S11). Figure S13 gives dependences of the rate and final yield of H₂ on the photosensitizer concentration. The amount of H₂ generated increases from 8.5 to 14.1 μ mol (corresponding to a TON of ~210 to 350, respectively) when varying the [Ir-(ppy)₂(dtbbpy)]⁺ concentration from 0.1 mM to 0.4 mM. The H₂ yield increases as [TEOA] increases from 0.05 to 0.25 M (TON increases from 160 to 290; Figure S12).

In photodriven catalytic systems, the photosensitizer excited state can function as either an oxidant or reductant, and thus can be quenched by an electron donor or an accept-or.^{5d,14d,16b,17} To assess the quenching mechanism of our system, the luminescence of the excited photosensitizer, $[Ir(ppy)_2(dtbby)]^{+*}$, in deaerated CH₃CN/DMF (1/3) was measured as a function of both TEOA and separately, Ni₄P₂ concentration (Figure 3a). The linear fitting of a Stern–Volmer plot gives an apparent rate constant of 2.7 × 10¹⁰ M⁻¹ s⁻¹ for oxidative quenching by Ni₄P₂ (Figure S14). The Stern–Volmer analysis of the reductive quenching by TEOA yields a quenching rate constant of 3.3×10^7 M⁻¹ s⁻¹ (Figure 3b and Figure S14). Although the rate constant for oxidative quenching is about 3 orders of magnitude higher than that of reductive quenching, the reductive process is still dominant

Figure 3. Emission spectra of $[Ir(ppy)_2(dtbbpy)]^+$ (0.2 mM) as a function of added (a) Ni_4P_2 and (b) TEOA.

given the much higher concentration of TEOA (0.25 M) relative to Ni_4P_2 (20 μ M).

To further investigate the electron-transfer steps, timeresolved fluorescence spectroscopy was used to follow the $[Ir(ppy)_2(dtbbpy)]^{+*}$ luminescence decay kinetics. Figure S15 shows that both Ni₄P₂ and TEOA can accelerate the [Ir(ppy)₂(dtbbpy)]^{+*} luminescence decay. Single exponential fitting of these kinetics in the presence of Ni₄P₂ and TEOA gives lifetimes of \sim 96 and \sim 52 ns, respectively; however, in the absence of quenchers, the luminescence decay kinetics slow down (lifetime = 103 ns). These data further confirm that catalyst Ni₄P₂ and TEOA can oxidatively and reductively quench the excited state of [Ir(ppy)₂(dtbbpy)]^{+*} and that the reductive quenching pathway is dominant in agreement with the steady state luminescence quenching results. Transient absorption measurements have also been used to determine the rates of electron-transfer processes. The decay kinetics of $[Ir(ppy)_2(dtbbpy)]^{+*}$ only is single-exponential with lifetime of ~115 ns (Figure S16a and Table S3). In contrast, the lifetime of $[Ir(ppy)_2(dtbbpy)]^{+*}$ shortens to ~98 ns through oxidative quenching by Ni_4P_2 (Figure S16b, Table S3). In addition, [Ir(ppy)₂(dtbbpy)]^{+*} is also reductively quenched by TEOA with the lifetime of \sim 78 ns (Figure S16c, Table S3), resulting in the formation of one-electron-reduced dye ($\lambda_{max} = 500 \text{ nm}$) that further reduces catalyst Ni_4P_2 (Figure S16d, red dash-line circle). On the basis of the above experimental data, we propose the mechanism in Scheme S1 for this visible-lightinduced photocatalytic H₂ evolution.

The stability of molecular WRCs under turnover conditions is a general concern. In this context, the photostability of Ni_4P_2 in our system has been examined using multiple physicochemical methods. First, under nonturnover conditions, the UV–vis spectrum of Ni_4P_2 shows no significant change after 24 h (Figure S17). Second, the FT-IR spectra of Ni_4P_2 isolated from postreaction solution after 2.5 h or 7 days remain unchanged relative to the spectrum before photocatalytic reaction (Figure S18). Third, no decrease of photocatalytic activity by Ni_4P_2 is observed in a mercury-poison test (using up to 150 mg Hg). Forth, no detectable formation of nanoparticles is observed by either DLS or TEM in the Ni_4P_2 -catalyzed postreaction solution. In contrast, nanoparticles with hydrodynamic sizes centered at 1.5 and 220 nm are observed by DLS in NiCl₂catalyzed reactions (Figure S19), consistent with the size distribution (centered at around 2 nm) shown in TEM image (Figure S20). Elemental mapping of these nanoparticles show the presence of both Ni and O, where the O might come from surface oxidation of the Ni nanoparticles upon exposure to air (Figure S20).

In conclusion, we report an efficient, robust, and noblemetal-free molecular POM-based WRC, Ni_4P_2 , that catalyzes H_2 production upon visible-light irradiation over 1 week. It achieves the highest TON value (~6500) for a POM-catalyzed H_2 evolution system with no significant loss in activity.

ASSOCIATED CONTENT

S Supporting Information

Experimental details and data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

chill@emory.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the NSF (Grant No. CHE-0911610) for support. The authors gratefully acknowledge NSF MRI-R2 grant (CHE-0958205) and the use of the resources of the Cherry Emerson Center for Scientific Computation, as well as ONR (Grant No. N00014-13-1-0864) for now-concluded catalytic H_2 evolution experiments.

REFERENCES

(1) (a) Meyer, T. J. Acc. Chem. Res. **1989**, 22, 163. (b) Gratzel, M. Nature **2001**, 414, 338. (c) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. **2006**, 103, 15729. (d) Esswein, A. J.; Nocera, D. G. Chem. Rev. **2007**, 107, 4022. (e) Gray, H. B. Nat. Chem. **2009**, 1, 7. (f) Eisenberg, R. Science **2009**, 324, 44. (g) Faunce, T.; Styring, S.; Wasielewski, M. R.; Brudvig, G. W.; Rutherford, A. W.; Messinger, J.; Lee, A. F.; Hill, C. L.; Fontecave, M.; MacFarlane, D. R. Energy Environ. Sci. **2013**, 6, 1074.

(2) (a) Brown, G. M.; Brunschwig, B. S.; Creutz, C.; Endicott, J. F.; Sutin, N. J. Am. Chem. Soc. **1979**, 101, 1298. (b) DeLaive, P. J.; Sullivan, B. P.; Meyer, T. J.; Whitten, D. G. J. Am. Chem. Soc. **1979**, 101, 4007.

(3) (a) Streich, D.; Astuti, Y.; Orlandi, M.; Schwartz, L.; Lomoth, R.; Hammarstroem, L.; Ott, S. *Chem.—Eur. J.* 2010, *16*, 60. (b) Li, X.; Wang, M.; Chen, L.; Wang, X.; Dong, J.; Sun, L. *ChemSusChem* 2012, 5, 913. (c) Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.; Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J. M.; Reijerse, E.; Lubitz, W.; Happe, T.; Artero, V.; Fontecave, M. *Nature* 2013, 499, 66. (4) (a) Fihri, A.; Artero, V.; Razavet, M.; Baffert, C.; Leibl, W.; Fontecave, M. *Angew. Chem., Int. Ed.* 2008, 47, 564. (b) Lazarides, T.; McCormick, T.; Du, P.; Luo, G.; Lindley, B.; Eisenberg, R. *J. Am. Chem. Soc.* 2009, *131*, 9192. (c) McNamara, W. R.; Han, Z.; Alperin, P. J.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. *J. Am. Chem. Soc.* 2011, *133*, 15368. (d) Zhang, P.; Jacques, P.-A.; Chavarot-Kerlidou, M.; Wang, M.; Sun, L.; Fontecave, M.; Artero, V. *Inorg. Chem.* 2012, *51*, 2115. (e) Singh, W. M.; Baine, T.; Kudo, S.; Tian, S.; Ma, X. A. N.; Zhou, H.; DeYonker, N. J.; Pham, T. C.; Bollinger, J. C.; Baker, D. L.; Yan, B.; Webster, C. E.; Zhao, X. Angew. Chem., Int. Ed. 2012, 51, 5941. (f) Khnayzer, R. S.; Thoi, V. S.; Nippe, M.; King, A. E.; Jurss, J. W.; El Roz, K. A.; Long, J. R.; Chang, C. J.; Castellano, F. N. Energy Environ. Sci. 2014, 7, 1477.

(5) (a) Helm, M. L.; Stewart, M. P.; Bullock, R. M.; DuBois, M. R.; DuBois, D. L. Science **2011**, 333, 863. (b) Small, Y. A.; DuBois, D. L.; Fujita, E.; Muckerman, J. T. *Energy Environ. Sci.* **2011**, *4*, 3008. (c) Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Science **2012**, 338, 1321. (d) Han, Z.; McNamara, W. R.; Eum, M.-S.; Holland, P. L.; Eisenberg, R. *Angew. Chem., Int. Ed.* **2012**, *51*, 1667. (e) Han, Z.; Shen, L.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. J. Am. Chem. Soc. **2013**, 135, 14659.

(6) (a) Karunadasa, H. I.; Chang, C. J.; Long, J. R. *Nature* **2010**, *464*, 1329. (b) Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J. R.; Chang, C. J. *Science* **2012**, *335*, 698.

(7) (a) Hawecker, J.; Lehn, J. M.; Ziessel, R. Nouv. J. Chim. 1983, 7, 271. (b) Collin, J. P.; Sauvage, J. P. Coord. Chem. Rev. 1989, 93, 245.
(c) McCormick, T. M.; Han, Z.; Weinberg, D. J.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. Inorg. Chem. 2011, 50, 10660.

(8) (a) Hill, C. L. Chem. Rev. **1998**, 98, 1. (b) Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Chem. Soc. Rev. **2001**, 30, 62. (c) Lv, H.; Geletii, Y. V.; Zhao, C.; Vickers, J. W.; Zhu, G.; Luo, Z.; Song, J.; Lian, T.; Musaev, D. G.; Hill, C. L. Chem. Soc. Rev. **2012**, 41, 7572. (d) Cronin, L.; Muller, A. Chem. Soc. Rev. **2012**, 41, 7333. (e) Sumliner, J. M.; Lv, H.; Fielden, J.; Geletii, Y. V.; Hill, C. L. Eur. J. Inorg. Chem. **2014**, 2014, 635.

(9) (a) Geletii, Y. V.; Botar, B.; Kögerler, P.; Hillesheim, D. A.; Musaev, D. G.; Hill, C. L. Angew. Chem., Int. Ed. 2008, 47, 3896.
(b) Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia, S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. J. Am. Chem. Soc. 2008, 130, 5006. (c) Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. Science 2010, 328, 342. (d) Murakami, M.; Hong, D.; Suenobu, T.; Yamaguchi, S.; Ogura, T.; Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 11605. (e) Vickers, J.; Lv, H.; Zhuk, P. F.; Geletii, Y. V.; Hill, C. L. MRS Proc. 2012, 1387, mrsf11-1387-e02-01. (f) Goberna-Ferrón, S.; Vigara, L.; Soriano-López, J.; Galán-Mascarós, J. R. Inorg. Chem. 2012, 51, 11707. (g) Stracke, J. J.; Finke, R. G. ACS Catal. 2013, 4, 79. (h) Schiwon, R.; Klingan, K.; Dau, H.; Limberg, C. Chem. Commun. 2014, 50, 100.

(10) (a) Geletii, Y. V.; Huang, Z.; Hou, Y.; Musaev, D. G.; Lian, T.; Hill, C. L. J. Am. Chem. Soc. 2009, 131, 7522. (b) Besson, C.; Huang, Z. Q.; Geletii, Y. V.; Lense, S.; Hardcastle, K. I.; Musaev, D. G.; Lian, T. Q.; Proust, A.; Hill, C. L. Chem. Commun. 2010, 46, 2784. (c) Huang, Z.; Luo, Z.; Geletii, Y. V.; Vickers, J. W.; Yin, Q.; Wu, D.; Hou, Y.; Ding, Y.; Song, J.; Musaev, D. G.; Hill, C. L.; Lian, T. J. Am. Chem. Soc. 2011, 133, 2068. (d) Car, P.-E.; Guttentag, M.; Baldridge, K. K.; Alberto, R.; Patzke, G. R. Green Chem. 2012, 14, 1680. (e) Tanaka, S.; Annaka, M.; Sakai, K. Chem. Commun. 2012, 48, 1653. (f) Zhu, G.; Glass, E. N.; Zhao, C.; Lv, H.; Vickers, J. W.; Geletii, Y. V.; Musaev, D. G.; Song, J.; Hill, C. L. Dalton Trans. 2012, 41, 13043. (g) Vickers, J. W.; Lv, H.; Sumliner, J. M.; Zhu, G.; Luo, Z.; Musaev, D. G.; Geletii, Y. V.; Hill, C. L. J. Am. Chem. Soc. 2013, 135, 14110. (h) Song, F.; Ding, Y.; Ma, B.; Wang, C.; Wang, Q.; Du, X.; Fu, S.; Song, J. Energy Environ. Sci. 2013, 6, 1170. (i) Lv, H.; Song, J.; Geletii, Y. V.; Vickers, J. W.; Sumliner, J. M.; Musaev, D. G.; Kögerler, P.; Zhuk, P. F.; Bacsa, J.; Zhu, G.; Hill, C. L. J. Am. Chem. Soc. 2014, 136, 9268. (j) Vickers, J. W.; Sumliner, J. M.; Lv, H.; Morris, M.; Geletii, Y. V.; Hill, C. L. Phys. Chem. Chem. Phys. 2014, 16, 11942. (k) Han, X.-B.; Zhang, Z.-M.; Zhang, T.; Li, Y.-G.; Lin, W.; You, W.; Su, Z.-M.; Wang, E.-B. J. Am. Chem. Soc. 2014, 136, 5359.

(11) (a) Toma, F. M.; Sartorel, A.; Iurlo, M.; Carraro, M.; Parisse, P.; Maccato, C.; Rapino, S.; Gonzalez, B. R.; Amenitsch, H.; Da Ros, T.; Casalis, L.; Goldoni, A.; Marcaccio, M.; Scorrano, G.; Scoles, G.; Paolucci, F.; Prato, M.; Bonchio, M. Nat. Chem. 2010, 2, 826.
(b) Quintana, M.; López, A. M.; Rapino, S.; Toma, F. M.; Iurlo, M.; Carraro, M.; Sartorel, A.; Maccato, C.; Ke, X.; Bittencourt, C.; Da Ros, T.; Van Tendeloo, G.; Marcaccio, M.; Paolucci, F.; Prato, M.; Bonchio, M. ACS Nano 2013, 7, 811. (c) Soriano-López, J.; Goberna-Ferrón, S.; Vigara, L.; Carbó, J. J.; Poblet, J. M.; Galán-Mascarós, J. R. *Inorg. Chem.* 2013, 52, 4753. (d) Guo, S.-X.; Liu, Y.; Lee, C.-Y.; Bond, A. M.; Zhang, J.; Geletii, Y. V.; Hill, C. L. *Energy Environ. Sci.* 2013, 6, 2654. (e) Liu, Y.; Guo, S.-X.; Bond, A. M.; Zhang, J.; Geletii, Y. V.; Hill, C. L. *Inorg. Chem.* 2013, 52, 11986.

(12) (a) Papaconstantinou, E.; Pope, M. T. Inorg. Chem. 1967, 6, 1152. (b) Savinov, E. N.; Saidkhanov, S. S.; Parmon, V. N.; Zamaraev, K. I. React. Kinet. Catal. Lett. 1981, 17, 407. (c) Ioannidis, A.; Papaconstantinou, E. Inorg. Chem. 1985, 24, 439. (d) Hill, C. L.; Bouchard, D. A. J. Am. Chem. Soc. 1985, 107, 5148. (e) Yamase, T.; Cao, X.; Yazaki, S. J. Mol. Catal. A: Chem. 2007, 262, 119.

(13) (a) Keita, B.; Nadjo, L. J. Electroanal. Chem. Interfacial Electrochem. 1987, 217, 287. (b) Keita, B.; Kortz, U.; Holzle, L. R. B.; Brown, S.; Nadjo, L. Langmuir 2007, 23, 9531.

(14) (a) Liu, X.; Li, Y.; Peng, S.; Lu, G.; Li, S. Int. J. Hydrogen Energy
2012, 37, 12150. (b) Zhang, Z.; Lin, Q.; Zheng, S.-T.; Bu, X.; Feng, P.
Chem. Commun. 2011, 47, 3918. (c) Matt, B.; Fize, J.; Moussa, J.;
Amouri, H.; Pereira, A.; Artero, V.; Izzet, G.; Proust, A. Energy Environ.
Sci. 2013, 6, 1504. (d) Lv, H.; Song, J.; Zhu, H.; Geletii, Y. V.; Bacsa, J.;
Zhao, C.; Lian, T.; Musaev, D. G.; Hill, C. L. J. Catal. 2013, 307, 48.
(e) Suzuki, K.; Tang, F.; Kikukawa, Y.; Yamaguchi, K.; Mizuno, N.
Chem. Lett. 2014, 43, 1429.

(15) Clemente-Juan, J. M.; Coronado, E.; Galan-Mascaros, J. R.; Gomez-Garcia, C. J. *Inorg. Chem.* **1999**, *38*, 55.

(16) (a) Cline, E. D.; Adamson, S. E.; Bernhard, S. Inorg. Chem. 2008, 47, 10378. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.

(17) Sun, H.; Hoffman, M. Z. J. Phys. Chem. 1994, 98, 11719.